Українська

Дослідіть основи обробки зображень через операції згортки. Дізнайтеся про ядра, фільтри, застосування та реалізації для глобального використання.

Обробка зображень: вичерпний посібник з операцій згортки

Обробка зображень є фундаментальним аспектом комп'ютерного зору, що дозволяє машинам "бачити" та інтерпретувати зображення. Серед основних технік обробки зображень згортка виділяється як потужна та універсальна операція. Цей посібник надає вичерпний огляд операцій згортки, охоплюючи їхні принципи, застосування та деталі реалізації для глобальної аудиторії.

Що таке згортка?

Згортка, в контексті обробки зображень, — це математична операція, яка поєднує дві функції — вхідне зображення та ядро (також відоме як фільтр або маска) — для отримання третьої функції, вихідного зображення. Ядро — це невелика матриця чисел, яка ковзає по вхідному зображенню, виконуючи зважену суму сусідніх пікселів у кожному місці. Цей процес змінює значення кожного пікселя на основі його оточення, створюючи різноманітні ефекти, такі як розмиття, підвищення різкості, виявлення країв тощо.

Математично згортка зображення I з ядром K визначається як:

(I * K)(i, j) = ∑mn I(i+m, j+n) * K(m, n)

Де:

Ця формула представляє суму поелементного добутку ядра та відповідного сусідства пікселів у вхідному зображенні. Результат розміщується у відповідному місці пікселя у вихідному зображенні.

Розуміння ядер (фільтрів)

Ядро, також відоме як фільтр або маска, є серцем операції згортки. Це невелика матриця чисел, яка диктує тип застосовуваного ефекту обробки зображення. Різні ядра розроблені для досягнення різних результатів.

Поширені типи ядер:

Приклади ядер:

Ядро розмиття (Box Blur):

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

Ядро для підвищення різкості:

 0  -1  0
-1   5 -1
 0  -1  0

Ядро Собеля (Виявлення країв - горизонтальне):

-1  -2  -1
 0   0   0
 1   2   1

Значення в ядрі визначають ваги, що застосовуються до сусідніх пікселів. Наприклад, у ядрі розмиття всі значення зазвичай позитивні та сумуються до 1 (або близького до 1 значення), що гарантує, що загальна яскравість зображення залишається приблизно однаковою. Навпаки, ядра для підвищення різкості часто мають від'ємні значення для підкреслення відмінностей.

Як працює згортка: покрокове пояснення

Давайте розберемо процес згортки крок за кроком:

  1. Розміщення ядра: Ядро розміщується над верхнім лівим кутом вхідного зображення.
  2. Поелементне множення: Кожен елемент ядра множиться на відповідне значення пікселя у вхідному зображенні.
  3. Сумування: Результати поелементних множень сумуються.
  4. Значення вихідного пікселя: Сума стає значенням відповідного пікселя у вихідному зображенні.
  5. Ковзання ядра: Ядро потім переміщується (ковзає) до наступного пікселя (зазвичай на один піксель за раз, горизонтально). Цей процес повторюється, доки ядро не пройде по всьому вхідному зображенню.

Цей процес "ковзання" та "сумування" і дає згортці її назву. Він фактично згортає ядро з вхідним зображенням.

Приклад:

Розглянемо невелике вхідне зображення 3x3 та ядро 2x2:

Вхідне зображення:

1 2 3
4 5 6
7 8 9

Ядро:

1 0
0 1

Для верхнього лівого пікселя вихідного зображення ми б виконали такі обчислення:

(1 * 1) + (2 * 0) + (4 * 0) + (5 * 1) = 1 + 0 + 0 + 5 = 6

Отже, верхній лівий піксель вихідного зображення мав би значення 6.

Доповнення (Padding) та кроки (Strides)

Двома важливими параметрами в операціях згортки є доповнення та кроки. Ці параметри контролюють, як ядро застосовується до вхідного зображення, і впливають на розмір вихідного зображення.

Доповнення (Padding):

Доповнення передбачає додавання додаткових шарів пікселів навколо межі вхідного зображення. Це робиться для контролю розміру вихідного зображення та для забезпечення належної обробки пікселів біля країв вхідного зображення. Без доповнення ядро не повністю перекривало б крайові пікселі, що призвело б до втрати інформації та потенційних артефактів.

Поширені типи доповнення включають:

Кількість доповнення зазвичай вказується як кількість шарів пікселів, доданих навколо межі. Наприклад, padding=1 додає один шар пікселів з усіх боків зображення.

Кроки (Strides):

Крок визначає, на скільки пікселів ядро переміщується на кожному етапі. Крок 1 означає, що ядро рухається на один піксель за раз (стандартний випадок). Крок 2 означає, що ядро рухається на два пікселі за раз, і так далі. Збільшення кроку зменшує розмір вихідного зображення, а також може зменшити обчислювальну вартість операції згортки.

Використання кроку, більшого за 1, фактично зменшує роздільну здатність зображення під час згортки.

Застосування операцій згортки

Операції згортки широко використовуються в різних застосунках обробки зображень, зокрема:

Конкретний тип використовуваного ядра залежить від бажаного застосування. Наприклад, ядро Гауссового розмиття зазвичай використовується для зменшення шуму, тоді як ядро Собеля — для виявлення країв.

Деталі реалізації

Операції згортки можна реалізувати за допомогою різних мов програмування та бібліотек. Деякі популярні варіанти включають:

Приклад реалізації (Python з NumPy):


import numpy as np
from scipy import signal

def convolution2d(image, kernel):
    # Переконуємося, що ядро є масивом NumPy
    kernel = np.asarray(kernel)

    # Виконуємо згортку за допомогою scipy.signal.convolve2d
    output = signal.convolve2d(image, kernel, mode='same', boundary='fill', fillvalue=0)

    return output

# Приклад використання
image = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])

convolved_image = convolution2d(image, kernel)

print("Оригінальне зображення:\n", image)
print("Ядро:\n", kernel)
print("Зображення після згортки:\n", convolved_image)

Цей код на Python використовує функцію scipy.signal.convolve2d для виконання операції згортки. Аргумент mode='same' гарантує, що вихідне зображення матиме той самий розмір, що й вхідне. Аргумент boundary='fill' вказує, що зображення слід доповнити постійним значенням (у цьому випадку 0) для обробки крайових ефектів.

Переваги та недоліки операцій згортки

Переваги:

Недоліки:

Просунуті техніки згортки

Окрім базових операцій згортки, було розроблено кілька просунутих технік для покращення продуктивності та вирішення специфічних проблем.

Згорткові нейронні мережі (CNN)

Згорткові нейронні мережі (CNN) — це тип моделей глибокого навчання, які значною мірою покладаються на операції згортки. CNN революціонізували комп'ютерний зір, досягнувши передових результатів у різних завданнях, таких як класифікація зображень, детектування об'єктів та сегментація зображень.

CNN складаються з декількох шарів: згорткових, пулінгових та повнозв'язних. Згорткові шари вилучають ознаки з вхідного зображення за допомогою операцій згортки. Пулінгові шари зменшують розмірність карт ознак, а повнозв'язні шари виконують фінальну класифікацію або регресію. CNN вивчають оптимальні ядра під час навчання, що робить їх надзвичайно адаптивними до різних завдань обробки зображень.

Успіх CNN пояснюється їхньою здатністю автоматично вивчати ієрархічні представлення зображень, захоплюючи як низькорівневі ознаки (наприклад, краї, кути), так і високорівневі (наприклад, об'єкти, сцени). CNN стали домінуючим підходом у багатьох застосунках комп'ютерного зору.

Висновок

Операції згортки є наріжним каменем обробки зображень, що уможливлює широкий спектр застосувань від базової фільтрації зображень до просунутого видобування ознак та глибокого навчання. Розуміння принципів та технік згортки є важливим для кожного, хто працює в галузі комп'ютерного зору або суміжних сферах.

Цей посібник надав вичерпний огляд операцій згортки, охоплюючи їхні принципи, застосування та деталі реалізації. Опанувавши ці концепції, ви зможете використовувати потужність згортки для вирішення різноманітних завдань обробки зображень.

Оскільки технології продовжують розвиватися, операції згортки залишатимуться фундаментальним інструментом у постійно еволюціонуючій галузі обробки зображень. Продовжуйте досліджувати, експериментувати та впроваджувати інновації зі згорткою, щоб відкривати нові можливості у світі комп'ютерного зору.